New metal-free organic catalyst to produce hydrogen fuel using mechanical energy

16

New Delhi, May 5 (IANS) Researchers from the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bengaluru (an autonomous institution under the Department of Science and Technology) develop a novel, cost-effective, metal-free porous organic catalyst for efficient production of Hydrogen (H2) by harvesting mechanical energy.

The team developed the metal-free donor-acceptor-based covalent-organic framework (COF) for piezocatalytic water splitting.

Piezocatalysis has emerged as a promising catalytic technology that harvests mechanical perturbations with a piezoelectric material to generate charge carriers that are utilised to catalyse water splitting.

The study, published in the journal Advanced Functional Materials, demonstrates a COF built from imide linkages between organic donor molecule tris(4-aminophenyl) amine (TAPA) and acceptor molecule pyromellitic dianhydride (PDA) acceptor exhibiting unique ferrielectric (FiE) ordering, which showed efficient piezocatalytic activity for water splitting to produce H2.

“The discovery breaks the traditional notion of solely employing heavy or transition metal-based ferroelectric (FE) materials as piezocatalysts for catalysing water splitting reactions,” said the team led by Professor Tapas K. Maji from the Chemistry and Physics of Materials Unit.

Conventional FE materials have limited charges confined at the surface only which usually leads to quick saturation of their piezocatalytic activity.

Using a simple donor molecule like TAPA and an acceptor molecule like PDA, Prof. Maji and his team built a COF system that has strong charge transfer properties, which creates dipoles (separation between positive and negative charges).

The TAPA units have a unique propeller-like shape, where their benzene rings twist and tilt to break the flat symmetry of the structure, helping it reach a more stable, lower-energy state.

Using theoretical analyses the team showed that COF has an unusual electronic structure with energy bands that couple and resonate with each other by dipolar ordering. This causes instability in the lattice structure, leading to FiE ordering. These FiE dipoles interact with flexible twisting molecular motion in the material, making them responsive to mechanical pressure.

The utilisation of a cost-effective, metal-free system with a high production rate of H2 by harvesting mechanical energy opens up a new route to green H2 based on porous heterogeneous catalysts, said the team.

–IANS

rvt/

Go to Source

Disclaimer

The information contained in this website is for general information purposes only. The information is provided by BhaskarLive.in and while we endeavour to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the website for any purpose. Any reliance you place on such information is therefore strictly at your own risk.

In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of this website.

Through this website you are able to link to other websites which are not under the control of BhaskarLive.in We have no control over the nature, content and availability of those sites. The inclusion of any links does not necessarily imply a recommendation or endorse the views expressed within them.

Every effort is made to keep the website up and running smoothly. However, BhaskarLive.in takes no responsibility for, and will not be liable for, the website being temporarily unavailable due to technical issues beyond our control.

For any legal details or query please visit original source link given with news or click on Go to Source.

Our translation service aims to offer the most accurate translation possible and we rarely experience any issues with news post. However, as the translation is carried out by third part tool there is a possibility for error to cause the occasional inaccuracy. We therefore require you to accept this disclaimer before confirming any translation news with us.

If you are not willing to accept this disclaimer then we recommend reading news post in its original language.

MGID