Guwahati, Nov 11 (IANS) Researchers from the Indian Institute of Technology (IIT) Guwahati have developed a groundbreaking method to remove ammonium from wastewater by using a combination of microalgae and bacteria.
The approach not only offers a sustainable solution but also drastically cuts down on energy consumption compared to traditional wastewater treatment methods, said the team led by Prof. Kannan Pakshirajan at IIT Guwahati.
Ammonium in wastewater, derived from sources like domestic sewage, industrial waste, agricultural runoff, and landfills, poses serious environmental and health risks.
It can lead to harmful algal blooms, increased water acidity, and oxygen depletion in aquatic ecosystems. Traditional ammonium removal methods involve oxygenation, which accounts for up to 90 per cent of a treatment plant’s energy consumption.
Pakshirajan’s team designed a photo-sequencing batch reactor (PSBR), where microalgae produce oxygen during photosynthesis, which is then utilised by nitrifying bacteria to convert ammonium into nitrate, followed by denitrification under anoxic condition using denitrifying bacteria to form nitrogen as the end product.
This eliminates the need for external oxygen aeration, making the process significantly more energy-efficient.
“Our system offers a sustainable solution for treating wastewater while cutting down on energy costs. By harnessing the oxygen naturally produced by microalgae, we can make the process not only more efficient but also highly cost-effective,” said Pakshirajan, Department of Bioscience and Bioengineering, IIT Guwahati.
The research, published in the prestigious Chemical Engineering Journal, combines scientific modelling with real-world data to ensure high ammonium removal rates under various conditions. The system demonstrated an energy savings of up to 91.33 per cent in comparison to conventional aeration methods used in wastewater treatment plants, making it an eco-friendly and cost-effective alternative.
This innovative method marks a significant step forward in sustainable wastewater treatment, offering practical applications for reducing the environmental impact of wastewater across industries.
–IANS
rvt/
Disclaimer
The information contained in this website is for general information purposes only. The information is provided by BhaskarLive.in and while we endeavour to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the website for any purpose. Any reliance you place on such information is therefore strictly at your own risk.
In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of this website.
Through this website you are able to link to other websites which are not under the control of BhaskarLive.in We have no control over the nature, content and availability of those sites. The inclusion of any links does not necessarily imply a recommendation or endorse the views expressed within them.
Every effort is made to keep the website up and running smoothly. However, BhaskarLive.in takes no responsibility for, and will not be liable for, the website being temporarily unavailable due to technical issues beyond our control.
For any legal details or query please visit original source link given with news or click on Go to Source.
Our translation service aims to offer the most accurate translation possible and we rarely experience any issues with news post. However, as the translation is carried out by third part tool there is a possibility for error to cause the occasional inaccuracy. We therefore require you to accept this disclaimer before confirming any translation news with us.
If you are not willing to accept this disclaimer then we recommend reading news post in its original language.